Hungarian elections analysis
Hungarian elections analysis¶
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (14, 7)
df_affiliation = pd.read_csv("affiliation.csv")
df_nominating_organization = pd.read_csv("nominating_organization.csv")
df_election = pd.read_csv("election.csv")
df_district_hierarchy = pd.read_csv("district_hierarchy.csv")
df_geographical_unit = pd.read_csv("geographical_unit.csv")
df_election_precinct = pd.read_csv("election_precinct.csv")
df_vote_record = pd.read_csv("vote_record.csv")
party_level_df = df_vote_record.merge(df_affiliation).merge(df_election_precinct)
# only first rounds, non individual
relevant_elections = df_election.loc[
lambda df: ~df["is_individual"] & df["election_id"].str.endswith("1")
]
# parties that have received over 10% of the votes in 3 different election
parties_for_elections = (
party_level_df.pivot_table(
index="party", columns="election_id", values="vote_count", aggfunc="sum"
)
.loc[:, relevant_elections["election_id"]]
.fillna(0)
)
total_votes_by_election = df_vote_record.merge(df_election_precinct).groupby("election_id")["vote_count"].sum()
(
parties_for_elections.loc[
lambda df: (df / total_votes_by_election[df.columns] > 0.03).sum(axis=1) > 2
]
.rename(columns=relevant_elections.set_index("election_id")["start_date"].to_dict())
.astype(int)
.T.style.background_gradient(
axis=None,
)
.set_caption('Number of votes gained by political parties in Hungarian elections')
)
party | DK | FIDESZ | FKGP | JOBBIK | KDNP | LMP | MDF | MSZP | PM | SZDSZ |
---|---|---|---|---|---|---|---|---|---|---|
election_id | ||||||||||
2018-04-08 | 306853 | 2607899 | 0 | 1090331 | 2607899 | 399507 | 0 | 680680 | 680680 | 0 |
2010-04-11 | 0 | 2706282 | 0 | 855263 | 2706282 | 383173 | 135357 | 990253 | 0 | 0 |
2006-04-09 | 0 | 2272962 | 822 | 116463 | 2272962 | 0 | 271881 | 2336684 | 0 | 350196 |
1998-05-10 | 0 | 1263504 | 617713 | 0 | 113710 | 0 | 136180 | 1445794 | 0 | 350871 |
2014-04-06 | 1287384 | 2142112 | 7956 | 1015570 | 2142112 | 265220 | 0 | 1287384 | 1287384 | 0 |
1994-05-08 | 0 | 378951 | 476262 | 0 | 378948 | 0 | 633112 | 1781707 | 0 | 1065316 |
2022-04-03 | 1930740 | 2803778 | 0 | 1930740 | 2803778 | 1930740 | 0 | 1930740 | 1930740 | 0 |
2002-04-07 | 0 | 2306761 | 38567 | 0 | 0 | 0 | 2306761 | 2361962 | 0 | 310899 |
1990-03-25 | 0 | 439257 | 576116 | 0 | 316402 | 0 | 1213501 | 533832 | 0 | 1049524 |
(
parties_for_elections.pipe(
lambda df: (df / total_votes_by_election[df.columns])
).loc[lambda df: (df > 0.03).sum(axis=1) > 2]
.rename(columns=relevant_elections.set_index("election_id")["start_date"].to_dict())
.T.style.background_gradient(
axis=None,
)
.set_caption('Percentage of votes gained by political parties in Hungarian elections')
)
party | DK | FIDESZ | FKGP | JOBBIK | KDNP | LMP | MDF | MSZP | PM | SZDSZ |
---|---|---|---|---|---|---|---|---|---|---|
election_id | ||||||||||
2018-04-08 | 0.056236 | 0.477945 | 0.000000 | 0.199823 | 0.477945 | 0.073217 | 0.000000 | 0.124747 | 0.124747 | 0.000000 |
2010-04-11 | 0.000000 | 0.527795 | 0.000000 | 0.166798 | 0.527795 | 0.074729 | 0.026398 | 0.193125 | 0.000000 | 0.000000 |
2006-04-09 | 0.000000 | 0.421047 | 0.000152 | 0.021574 | 0.421047 | 0.000000 | 0.050364 | 0.432851 | 0.000000 | 0.064871 |
1998-05-10 | 0.000000 | 0.282987 | 0.138349 | 0.000000 | 0.025468 | 0.000000 | 0.030500 | 0.323814 | 0.000000 | 0.078584 |
2014-04-06 | 0.263551 | 0.438529 | 0.001629 | 0.207905 | 0.438529 | 0.054295 | 0.000000 | 0.263551 | 0.263551 | 0.000000 |
1994-05-08 | 0.000000 | 0.070447 | 0.088537 | 0.000000 | 0.070446 | 0.000000 | 0.117695 | 0.331218 | 0.000000 | 0.198041 |
2022-04-03 | 0.361846 | 0.525465 | 0.000000 | 0.361846 | 0.525465 | 0.361846 | 0.000000 | 0.361846 | 0.361846 | 0.000000 |
2002-04-07 | 0.000000 | 0.411576 | 0.006881 | 0.000000 | 0.000000 | 0.000000 | 0.411576 | 0.421425 | 0.000000 | 0.055471 |
1990-03-25 | 0.000000 | 0.089824 | 0.117810 | 0.000000 | 0.064701 | 0.000000 | 0.248149 | 0.109164 | 0.000000 | 0.214618 |